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Abstract 

The European Union Emissions Trading Scheme (EU ETS) is one of the most 

important initiatives ever taken to limit the greenhouse gas emissions that cause 

climate change. Carbon markets trade with the spot European Union Allowance 

(EUA), with one EUA providing the right to emit one tone of Carbon dioxide (CO2). 

We examine the spot EUA returns in BlueNext that exhibit a volatility clustering 

feature and the carbon-market system that is impacted by the announcements of CO2 

emissions policies. We propose a regime-switching jump diffusion model (RSJM) 

with a hidden Markov chain to capture not only a volatility clustering feature, but also 

the dynamics of the spot EUA returns that are influenced by change in the CO2 

emissions policies, and thereby altering jump arrivals. Thus, the carbon-market 

macroeconomic environment affects the switching intensities of the RSJM. We derive 

the theoretical futures-option prices with a stochastic convenience yield under a jump 

diffusion model (JDM) and the RSJM via the generalized Esscher transform on two 

sets of filtration that carry a regime-switching risk premium under the carbon-market 

environment. The empirical study shows that the derived futures-option prices exhibit 

the best performance under the RSJM.  

  

Key word: European Union Emissions Trading Scheme; Markov modulated Poisson 

process; Esscher transform; Black’s formula; Jump diffusion model.  
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1. Introduction  

Since the industrial revolution originated in Britain in the eighteenth century, 

human beings have excessively relied on petrochemical products, including the 

burning of fossil fuels. Carbon dioxide (CO2) emissions and the greenhouse gas have 

led directly to climate change, and thereby causing extreme environmental changes 

such as an increasing frequency of hurricanes, droughts and floods, colder or hotter 

weather. In addition, it also causes human lives and a huge loss of properties. As a 

result, many countries and organizations have taken measures to reduce CO2 to lessen 

the effect of extreme climate changes. The Kyoto Protocol, the most crucial 

international commitment, was stipulated in 2008 for lowering greenhouse gases CO2, 

and thus carbon markets were born for the purpose of reducing CO2 emissions. 

The carbon trading markets are divided into two categories of carbon products. 

One is the carbon trading program, including the European Union Emissions Trading 

(EU ETS), the New South Wales (NSW), the Chicago Climate Exchange (CCE), the 

Regional Greenhouse Gas Initiative (RGGI), and the Assigned Amount Units (AAU). 

The other is the greenhouse-gas reduction project in Kyoto Protocol, including the 

Clear Development Mechanism (CDM), the Joint Implementation and the voluntary 

market. Table 1 reports the evolution of the trading value of EU ETS allowances in 

the carbon markets from 2005 to 2010. Other allowances in Table 1 involve the 

trading carbon value in NSW, CCE, RGGI, and AAU, and other offsets cover the 

Joint Implementation and the voluntary market. As observed, the trading value of 

EUAs increased substantially from 2005 to 2010, and EUAs accounted for 84 percent 

in value of the global carbon market in 2010. 



4 

 

【Insert Table 1 】 

There are some differences between the carbon markets of the EU ETS and the  

financial markets in terms of the provisions of cap-and-trade, the characteristic of 

different periods, and the largest existing emission-trading scheme for the spot EUAs. 

Seifert et al. (2008) present a tractable stochastic equilibrium model to reflect the 

stylized features of the EU ETS, including the largest existing emission-trading 

scheme, penalty costs, banking and borrowing, the trading period break, and 

increasing marginal abatement costs, and then use the model to analyze the CO2 spot 

price dynamics. They find that CO2 prices do not follow any seasonal pattern, and 

discounted prices should possess the martingale property. They conclude that an 

adequate CO2 price process should exhibit a time- and price- dependent volatility 

structure. 

Hinz and Novikov (2010) explain the logical principles underlying the 

risk-neutral modeling of emission certificate price evolution, and show that, within a 

realistic situation of a risk-averse market equilibrium, there is a useful feedback 

relation characterizing risk. The presence of jump events is particularly important to 

describe price shocks, which may be induced by possible discontinuities in 

information flow. Moreover, Borovkov et al. (2010) extend the Hinz-Novikov model 

by assuming the emission allowance certificates to follow a jump-diffusion model 

under the continuous-time framework. Carmona et al. (2009) investigate a dynamic 

price equilibrium and provide a mathematical analysis of market equilibrium and an 

optimal stochastic control that shows social optimality. In addition, Cetin (2009) 

consider the different stages of the spot EUAs using a Markov chain in the local risk 

minimization to examine evaluation and hedging. 
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Daskalakis et al. (2009) investigate three main markets for the spot EUAs within 

the EU ETS: Powernext1, Nord Pool and European Climate Exchange (ECX), and 

suggest that the prohibition of banking emission allowances between distinct phases 

of the EU ETS has a significant implication in terms of futures pricing. They develop 

both theoretically and empirically a valid framework for pricing and hedging options 

on intra-phase and inter-phase futures. Uhrig-Homburg and Wagner (2009) study the 

relationship between the spot EUAs and the EUAs futures, and find that the EUAs 

futures are the price discovery processes of the spot EUAs. However, it is important 

to note that due to the market design, the first- and the second-period (called Phase I 

and Phase II, here-after) spot EUAs are just two different goods. Therefore, the link 

between the first-phase spot and the second-phase futures is naturally very weak. 

Benz and Trück (2009) study Markovian and AR-GARDH models to fit the return of 

spot EUAs from EU ETS. In addition, Cetin and Verschuere (2010) employ a hidden 

Markovian process and a filtering approach to capture the impact of news release, and 

derive the option pricing models within the EU ETS. 

Daskalakis et al. (2009) find that a jump diffusion model (JDM), proposed by 

Merton (1976), provides a better fit to the return of the spot EUAs than other models. 

However, we find that there is a volatility clustering feature in the return of the spot 

EUAs, which cannot be captured by the JDM. Hence, we propose a RSJM with 

regime-switching intensities of jump to capture the dynamics of the spot EUAs 

returns which are influenced by change in the macroeconomic condition of the carbon 

market and the policies released from EU ETS. Moreover, the theoretical 

futures-option prices are derived under the JDM and the RSJM via the generalized 

                                                       
1  On 21/12/2007, NYSE Euronext purchased the environmental business lines of Powernext, which 
launched a new market in Paris under the name BlueNext. 
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Esscher transform on two kinds of filtration. We find that the RSJM not only produces 

the result consistent with the volatility clustering feature, but also provide more 

accurate theoretical futures and futures-option prices. In addition, the RSJM is able to 

detect the existence of regime switching risk. We also compare the accuracy of the 

theoretical futures-option prices under the Black’ formula, the JDM and the RSJM 

with a constant and a stochastic convenience yield. 

This article is organized as follows: Section II describes the EU emissions trading 

carbon emission allowances using a statistic description and an economic analysis for 

BlueNext. In Section III, we investigate three models such as the Black-Scholes 

model (BSM), the JDM and the RSJM. The pricing formulas of futures and futures 

options under the EU ETS are derived in Section IV. Section V provides an empirical 

analysis of the futures options. The final section concludes the results. 

2. Economic analysis of EUAs in the EU ETS 

This section investigates the dynamics of the spot EUAs, the EUA futures and 

the futures options using economic and policy analysis, and also show, based on the 

past data, how abnormal price is changed in the carbon market. The spot emission 

allowances in Europe are mainly traded through two largest spot EUAs markets, the 

BlueNext and the European Energy Exchange (EEX). In 2009, the BlueNext 

exchange accounted for almost 63% of the spot market transactions in the EU ETS 

market, while the EEX was about 16%. The data used in this study consist of the daily 

closing prices for the period 24/06/2005-28/12/2007 and 26/02/2008-30/12/2010 at 

the BlueNext. Panel A and B in Figure 1 represent, respectively, the daily closing 

prices and the return dynamics of spot EUAs in the BlueNext market.  
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【Insert Figure 1】 

According to the enforcement of the Kyoto Protocol in 2008, the dynamics of the 

EU ETS is divided into three phases (Alberola et al. 2008; Chevalier, 2009 and 2010; 

Denny et al. 2010): the first phase (Phase I) represents the previous Kyoto Protocol 

era from 2005 to 2007, Phase II denotes the Kyoto Protocol era from 2008 to 2012, 

and Phase III indicates the Post-Kyoto Protocol era from 2013 to 2020. In Phase II, 

the European Union target for the then fifteen member states was set a reduction of 8 

% below the 1990 emissions level. The target in Phase III was a reduction of 21% 

lower than the 2005 level. In the three phases, the dynamics, the statistics and the 

characteristics of the price of spot EUAs are described sequentially as follows. 

Phase I: Previous Kyoto Protocol Era (2005-2007) 

The EU ETS started on January 1, 2005. Phase I was introduced as a warm-up 

period and it was operated in this phase to put in place the policies infrastructure of 

permit trading. From the beginning of €8/ton on January 1, 2005, spot EUAs prices 

rose to €25-30/ton until the release of the 2005 verified emission on April 24, 2006, 

which caused a depressive effect on the spot EUAs prices as shown in Figure 1 by a 

sharp break in the spot EUAs price. Based on this sharp break, Alberola et al. (2008) 

divided Phase I into two periods, Period I from 24/06/2005 to 24/04/2006 and Period 

II from 01/06/2006 to 28/12/2007. Based on the BlueNext data, some economic 

features in spot EUAs are given as follows. 

Period I in Phase I: Demand over Supply 

In this period, the spot EUAs price began with 8€/ton on January 1, 2005, and 
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increased to around 30€/ton in July 2005, which fluctuated in a range of 20-25€/ton 

for almost the following six months, and then rose to 30€/ton. The demand came 

mainly from power producers, while most of other market participants did not take 

advantage of buying/selling carbon allowances. In addition, the demand for the spot 

EUAs continued to expand primarily from power operators, and increased 

substantially during the winter due to a rise in energy prices, especially in gas price 

(Alberola et al. 2008; Kanen, 2006; Christiansen et al. 2005; Bunn and Fezzi, 2007; 

Convery and Redmond, 2007; Mansanet-Bataller et al. 2007). Thus, the main deriver 

of price jumps came from carbon prices in Period I. Table 2 reports that 11 jump 

events are recorded in Period I when the ± 5% excess returns in spot EUAs are 

regarded as jump events.  

【Insert Table 2】 

Period II in Phase I: Excess of Supply over Demand 

In the final week of April 2006, the spot EUAs prices collapsed when power 

operators disclosed the 2005 verified emission data showing that there was an 

oversupply of the spot EUAs. And then its prices moved in the range from 15€/ton to 

20€/ton until October 2006 (Alberola et al. 2008). In addition to the oversupplied 

2005 verified emission, the prices in Period II declined toward zero due to the 

banking restrictions that the allowances distributed in Phase I were not valid in Phase 

II. However, during Phase II and III, EUAs were fungible between the different 

phases. Therefore, change in the policy issue such as the oversupplied verified 

emission and the banking restrictions is the main driver of a decrease in the spot 

EUAs toward zero, which leads to price jumps in carbon price in Period II. The 
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carbon-price driver is evidenced to vary with institutional events such as emissions 

cap and the banking restrictions (Alberola et al. 2008). Table 2 reports that 147 jump 

events are recorded in Period II when the ± 5% excess returns in the spot EUAs are 

considered as jump events, and about two thirds of the total jump events are identified 

as decreasing jump events. 

Phase II: Kyoto Protocol Era (2008-2012)2 

In Phase II, spot EUAs prices increase to 20€/ton primarily because the 

European Commission has reaffirmed that it will enforce tighter targets. During Phase 

I, if an installation does not meet its emission target during the year, the penalty is 

equal to 40€/ton in excess, plus the restitution of one allowance in the following year. 

During Phase II, the penalty is increased to 100€/ton, following the same principle. 

Carbon prices in Phase II have been more stable and healthy in the price pattern 

compared to Phase I. As shown in Figure 1, the CO2 price has been oscillating 

between 10€/ton and 30€/ton, depending on the levels of allowances demand due to 

industrial production and the depressive impact of the economic crisis. Therefore, the 

jump events are primarily driven by business activity and the financial tsunami in 

Phase II. Table 2 reports 34 jump events in Phase II when the ± 5% excess returns in 

the spot EUAs are identified as jump events. 

Christiansen et al. (2005) and Alberola et al. (2008) have identified the main 

drivers of the carbon price as policies issues, energy prices, temperature events and 

                                                       
2 South Africa hosted the 17th Conference of Parties of the United Nations Framework Convention on 
Climate Change (UNFCCC COP 17) in 2011. There are two important results from the UNFCCC COP 
17 climate summit in Durban. First, the Kyoto Protocol will be on life support until it is replaced by a 
new agreement. Secondly, Ad Hoc Working Group on the Durban Platform for Enhanced Action will 
have a protocol, legal instrument or agreed outcome with legal force after 2020. 
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economic activity, which also cause the carbon price to jump. By observing the 

number of the spot-EUAs jump events in Phase II and in Period I and II of Phase I, 

the arrival rates of jumps vary with different periods. Therefore, to identify a suitable 

model for the dynamic behavior of the spot EUAs and their derivatives, we analyze 

the performance of the BSM, the JDM, and the RSJM in the following sections. 

3. Financial and econometric analysis of emission allowances 

In this section, we introduce the properties and characteristics of the three 

models, the BSM, the JDM and the RSJM. We also provide a parameter-estimation 

method along with the relevant literature. Then, the carbon emission allowances are 

tested with the three proposed models in the BlueNext exchange. Finally, we show 

that the characteristics of the carbon emissions-allowances markets are consistent with 

the result obtained from the RSJM. 

3.1 Black-Scholes model 

The Black-Scholes model (1973, BSM) is widely used for the valuation of 

options and options on futures. Under the BSM, the dynamics of the spot EUAs ( )S t  

is described by a geometric Brownian motion process given below, 

( ) ( )
( )

dS t dt dW t
S t

μ σ= +       (1) 

where μ  denotes the instantaneous mean return at time t, σ  is the volatility of the 

instantaneous return, and ( )W t  is a Brownian motion. By Itô’s Lemma, the 

logarithmic return can be written by the following equation, 

( )BR t μ σ= + N        (2) 
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where ( )BR t
 
is the logarithmic return at time t and μ  denotes the mean of the 

logarithmic return at discrete time tΔ . N  is a normal distribution with zero mean 

and variance tΔ .  

Fama (1965) provides a strong evidence in favor of the random-walk hypothesis 

and the leptokurtic behavior of the stock price. Mandelbrot (1963) finds that the 

“stable Paretian” distribution is better than a normal distribution to fit the skewness 

and kurtosis features of the underlying asset return. Kou (2002) also shows that the 

BSM cannot capture the leptokurtosis in the dynamic behavior of the stock return and 

volatility smile observed in option markets. Merton (1976) and Kou (2002) also 

propose a JDM to address the skewness and kurtosis found in the observed behavior 

of the stock return and volatility smile. 

3.2 Jump diffusion model 

Merton (1976) develops a jump diffusion model (JDM) to represent the 

continuous process of asset returns with a Brownian motion and a discontinuous 

variation with a compound Poisson process. By following the JDM, the dynamics of 

the spot EUAs price can be described by (3) given below, 

( )

1

( ) ( ) ( 1)
( )

n

N t
Z

n

dS t dt dW t d e
S t

μ σ
=

⎛ ⎞
= + + −⎜ ⎟− ⎝ ⎠

∑
    

(3) 

where μ  and σ  denote, respectively, the mean return and the return volatility 

conditional on no jump events occurred. The term,
( )

1
( 1)n

N t
Z

n
e

=

−∑ , represents a 

compound Poisson process. ( )N t is a Poisson process with mean jump tλ  over a 
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time period from 0 to t , and the jump variable, ( )ln
( )n

S tZ
S t

=
−

, has a normal 

distribution with mean Jμ  and variance 2
Jσ . By using the Itô-Doléans formula, the 

return dynamics of the spot EUAs can be rewritten as follows, 

( )

1
( )

N t

J n
n

R t Zμ σ
=

= + +∑N                    
 

(4) 

where 
( )

1

N t

n
n

Z
=
∑  denotes a compound Poisson with a discontinuous time tΔ . 

A volatility clustering phenomenon explored by Mandelbrot (1963) essentially 

implies that large volatility is subsequently followed by large one and small volatility 

succeeded by small one. Kou (2002) points out that the JDM can neither capture 

clustering fluctuations nor address the volatility clustering feature in stock returns. 

This feature is also observed in the carbon-market returns, when relevant information 

comes along with a high frequency for a period of time or a low frequency for another 

period. Daskalakis et al. (2009) find that, by using statistical tests, the JDM is better to 

capture the dynamics of the spot EUAs return than other models such as the 

Geometric Brownian motion model (GBM), the mean-reverting square-root model 

(MRSRM), the mean-reverting logarithmic model, the model of constant elasticity of 

variance, the GBM with jump risk, and the MRSRM with jump risk. However, the 

jump diffusion model cannot accommodate for volatility clustering. Therefore, we use 

a regime-switching jump diffusion model to fit the observed return of the spot EUAs 

and to capture the volatility clustering feature. 

3.3 Regime switching Jump diffusion model 

We propose a regime-switching jump diffusion model (RSJM) to capture the 
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leptokurtic return feature, volatility smile, and volatility clustering by a Markov chain 

with two intensities. More precisely, the dynamics of the spot EUAs price is given by 

( )

1

( ) ( ) ( 1)
( )

n

t
Z

n

dS t dt dW t d e
S t

μ σ
Φ

=

⎛ ⎞
= + + −⎜ ⎟− ⎝ ⎠

∑              (5) 

where ( )tΦ  denotes a Markov-modulated Poisson process with Markov process 

( )X t  having a finite state space { }1, 2I = , and nZ  represents an independent 

sequence of jump sizes which are normally identically distributed with mean Jμ  

and variance 2
Jσ . Assume that the state of the carbon market is a homogeneous 

continuous-time hidden Markov chain { }( )X X t= . The transition matrix can be 

written as follows  

11 11

22 22

( ) 1 ( )
( )

1 ( ) ( )
c tp t p t

P t e
p t p t

Ψ−⎡ ⎤
= =⎢ ⎥−⎣ ⎦              (6)

 

where 1 1

2 2

α α
α α
−⎡ ⎤

Ψ = ⎢ ⎥−⎣ ⎦  
denotes a transition-rate matrix, , 1,2,i iα =  represents the 

transition rate leaving from state i I∈  to the other state, and iα−  is the transition 

rate arriving from the other state to state i . ( ) ( )1 2 2 1
1 2

1, ,π π α α
α α

=
+

 denote the 

initial stationary sates of (0)X . Assume that ( ), ,Ω PF  is a complete probability 

space. Let ( )X t  and ( )tΦ  be defined by the joint probability,

( , ) ( (0) , ( ) , ( ) ),ijP n t X i X t j t n≡ = = Φ =P  under the Markov modulated Poisson 

process. A Laplace transformation of the Markov-modulated Poisson process is 
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defined as 
0

( , ) ( , ) ,   0 1n
ij ij

n
P t P n tξ ξ ξ

∞

=

= ∀ ≤ ≤∑  (cf. Last and Brandt, 1995). Under 

the Kolmogorov's forward equation, the moment generating function has a unique 

solution for ( )( , ) exp (1 )t tξ ξ⎡ ⎤= Ψ − − Λ⎣ ⎦P , where Λ  is an intensity matrix 

1

2

0
0
λ

λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

  and 
0

exp( )
!

n

n

AA
n

∞

=

=∑  where A is a square matrix. 

Similarly, by using the Itô-Doléans formula and simplifying the transition of the 

states, the return dynamics of the spot EUAs can be rewritten by  

1

2

( )

1
( )

1

( ) 1
( )

( ) 2

N t

n
n

R N t

n
n

Z if X t
R t

Z if X t
μ σ =

=

⎧
=⎪

⎪= + + ⎨
⎪ =⎪⎩

∑

∑
N            (7) 

where ( )iN t  denotes a Poisson process with  intensity iλ  for time period tΔ  in 

state { }1,2i∈ . Here, the transition matrix of (7) can be denoted similarly as (6) and 

given below: 

11 11 11 11

22 22 22 22

( ) 1 ( ) 1
( )

1 ( ) ( ) 1
d p t p t p p

P t
p t p t p p
Δ − Δ −⎡ ⎤ ⎡ ⎤

Δ = =⎢ ⎥ ⎢ ⎥− Δ Δ −⎣ ⎦ ⎣ ⎦
.         (8) 

Next, we estimate the parameters of the discrete models described in (2), (4), (7) 

and (8), and test empirically the BSM, the JDM, and the RSJM using the maximum 

likelihood (LR) estimation and the likelihood ratio test (LRT). The RSJM parameters 

are estimated using the maximum likelihood method with the Expectation 

Maximization algorithm (EM, Dempster et al. 1977) and a gradient algorithm (Lange, 

1995). Their standard deviations are estimated using Supplemented Expectation 
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Maximization algorithm (SEM, Meng et al. 1991). We shall show that both the regime 

and the jump dynamics of the spot EUAs returns can produce the result that is 

consistent with the empirical phenomenon exhibited in Phase I and II. Then, we check 

whether or not the RSJM can capture the volatility clustering feature by using the 

autocorrelation of squared spot EUAs returns.  

3.4 Empirical analysis  

The model parameters are estimated via the EM using the spot EUAs price data 

from the BlueNext from 24/06/2005 to 30/12/2010. The parametric estimators and the 

statistical test are listed in Table 3 for the three models: the BSM, the JDM, and the 

RSJM. The mean ( )μ  and the standard deviation ( )σ  of the BSM are, respectively, 

0.0011 and 0.0251 in Period I, and -0.0163 and 0.924 in Period II of Phase I. The spot 

EUAs price increases in Period I while decreasing in Period II. In addition, the spot 

EUAs price is more volatile in Period II than in Period I. The LR test results show 

rejecting the BSM at the 95% significance level, which is consistent with Daskalakis 

et al. (2009) who find that the JDM is better than other competing models. In addition, 

the jump frequency ( )1λ , the mean ( )Jμ  and the volatility ( )Jσ of the logarithmic 

jump size of the JDM are, respectively, 0.4846, -0.0026 and 0.0314 in Period I, and 

0.9789, -0.1710 and 0.0879 in Period II. The jump frequency of the spot EUAs price 

increases from Period I to Period II, while the mean and the volatility of the 

logarithmic size are downward with a variation from Period I to Period II.  

【Insert Table 3 】 

Further, in Table 3 based on the LR tests of the three models in Phase I, the JDM 
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is found to be a better fit than the BSM (the LRT 632.38 is significant at the 95% 

level), and the RSJM is better than the JDM (the LRT 134.21 is significant at the 95% 

level). Thus, the RSJM is the best performer among the three models. With the RSJM, 

the transition probabilities 11p  and 22p  in Phase I are, respectively,0 9868.  and

0 9830. . These two high transition probabilities imply that the probability of 

switching from a low frequency (0.0009) to a high frequency (1.0460) is very small, 

and vice versa. In addition, the Carbon price drivers in Phase I tend to vary depending 

on institutional events such as emissions cap and banking restrictions, which in turn 

affect the frequencies of information arrivals for good or bad news. Finally, Table 3 

also shows by the LR test results that the RSJM in Phase II provides a better fit than 

the JDM (the LRT 79.89 is significant at the 95% level). The above RSJM test results 

carry over to Phase II. 

Figure 2 plots the dynamics of the spot EUAs price, its logarithmic return, the 

probability of low frequency, and the probability of jumps in Phase II. By observing 

Panel A, during the financial crisis started to occur in July, 2008, the spot EUAs 

prices went down because the CO2 emissions were low in industrial production. Panel 

B reveals the fact that the volatility was higher in 2008 than in 2009 and 2010, 

implying that the jump frequency was higher in 2008. In addition, Panel B also 

provides an evidence of volatility clustering, while Panel C indicates a high 

probability of low frequency from February, 2008 to July, 2008, owing to the new 

CO2 emission policies, and also a low probability of low frequency from October, 

2008, to June, 2009 which was caused by the financial crisis that led to a decrease in 

the CO2 emissions. Hence, there was a transition of states from a low frequency to a 

high frequency in October, 2008 and from a high frequency to a low frequency in 
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June, 2009. As the financial crisis almost fully developed in around October, 2008, 

the probability of a low (high) frequency became lower (higher). In addition, there 

was also a switch of states around June, 2009, during which time the probability of 

low (high) frequency also became higher (lower). Switching features were also 

observed in September and December, 2009 and May, 2010. However, the high 

frequencies kept a short period of time. Finally, Panel D also shows that the jump 

probability was large from October, 2008 to June, 2009, which was consistent with 

the event of the financial crisis. 

Mandelbrot (1963) and Fama (1965) report a volatility clustering feature in stock 

returns. This feature is also found in sport EUAs returns (Panel B of Figure 1). 

Volatility clustering (Cont, 2007) can be observed by the fact that the autocorrelation 

of squared spot EUAs returns is slowly decreasing. This is shown in Panel A of Figure 

3.  

【Insert Figure 3】 

The estimated autocorrelation of squared spot EUAs returns under the RSJM 

reported in Panel B of Figure 3 indicates that the autocorrelation of squared spot 

EUAs returns is slowly decreasing. This evidence shows that the RSJM can capture 

the volatility clustering feature of spot EUAs returns in Phase I of the BlueNext. The 

above autocorrelation results also carry over to Phase II. 

4. Pricing futures and futures options on emission allowances 

In this section, the general Esscher transformation is introduced and applied to 

the RSJM to make it become a martingale process under two conditions. Whether 
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regime-switching risk is a source of systematic or unsystematic risk depends on the 

structure of filtration. In addition, a mean-reverting model is used to describe the 

process of convenience yields. Therefore, prices of futures and futures options are to 

be derived with a mean-reverting convenience yield model and the dynamics of spot 

EUAs is modeled by the RSJM under a no-arbitrage condition.  

4.1 Two changes of measure in regime-switching jump diffusion 

Generally speaking, a unique martingale measure cannot be found when we 

consider asset returns with jump risks in an incomplete market. Gerber and Shiu 

(1994) used the Esscher transformation to price the options of insurance products in 

an incomplete market. The Esscher transformation has an advantage that the dynamic 

structure of invariance can be maintained after a measure transform. In addition, the 

existence condition of the moment generating function is still qualified regardless of 

the size of jump events. Furthermore, the Esscher transformation also can be regarded 

as the general Girsanov transformation. Based on a Markovian process of jump states, 

we promote a more flexible and general Esscher transformation with 

regime-switching jump risks.  

Assume that a finite time is specified by [ ]0,T , the filtration of spot EUAs price 

( )S t  is denoted by S
tF  and the filtration of a hidden Markov chain X  is X

tF . 

Define the join filtrations of the EUAs and the hidden Markov chain as       σ

-algebras:  ( )X S
t tσ= ∨G F F

 
and ( )X S

tσ= ∨TH F F . Observing the filtrations G  

and H , we find that the filtration G  contains less information of the Markov chain 

than the filtration H . The latter ( )H  provides investors the information regarding 
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the Markov-chain states risk. Then, the Esscher transform is defined by two different 

pricing kernels under the different filtrations. More specifically, the Esscher transform 

(Siu et al. 2008) is given as follows, 

( )

1

( )

0
1

exp ( )

exp ( ) |

T
C J

nh
nP
T

P C J X
n

n

h W T h Z
d E
d

E h W T h Z

σ

σ

Φ

=

Φ

=

⎡ ⎤⎛ ⎞
⎢ ⎥+⎜ ⎟
⎢ ⎥⎝ ⎠= ⎢ ⎥⎡ ⎤⎛ ⎞⎢ ⎥+⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∑

∑

P 
P

M

M
F

       (9) 

where Ch and Jh  denote, respectively, the parameters of the Esscher transform 

associated with continuous and discontinuous motion, which is based on the 

Novikov’s condition, 
( )

1
exp ( )

T
P C J

n
n

E h W T h Zσ
Φ

=

⎡ ⎤⎛ ⎞
+ <∞⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ , and  =M�G or  H . In 

the Esscher transform framework, the risk induced by regime switching is priced (i.e., 

regime-switching risk or systematic risk) under the filtration G , while it is not priced 

(i.e., unsystematic risk) under the filtration H . This is because the filtration H  

contains information X
TF , while the filtration G  does not contain sufficient 

information regarding regime-switching risk, and thereby being undiversifiable by an 

investment portfolio. We will elaborate more on it in the subsequent text. 

(I) The Case With Filtration H : No Regime-Switching Risk Premium 

According to the definition of a martingale for the discounted stock price under 

the risk-neutral measure, the martingale condition can be shown as follows: (See 

Appendix A ) 

2 ( ( 1) ( )) 0,   1, 2C J J
ih r h h iμ σ λ φ φ+ − + + − = =  under =M�H  
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where ( )Jhφ  denotes the moment generating function of the normal jump variable 

nZ  with mean Jμ  and variance 2
Jσ . Because the asset returns with jumps are 

considered, Second Fundamental Theorem of asset pricing is not satisfied. Thus, there 

are infinite solutions for the Esscher-transform parameters that can satisfy the 

martingale condition (Also see Bo et al. 2010). The general Esscher transform is 

disassembled into continuous and discontinuous parts. We find a specific solution that 

satisfies the martingale condition as follows: (See Appendix A ) 

* 2 , C rh μ
σ
−

= and
2

* 2

1
2 

J J
J

J

h
μ σ

σ

− −
= .            

Based on the solution of the martingale condition under the filtration H , the 

dynamic process of the spot EUAs by the Esscher transform under the risk-neutral 

measure Q  can be shown and given by: (See Appendix A ), 

( )

1

( ) ( ) ( 1)
( )

Q
Q
n

t
ZQ

n

dS t rdt dW t d e
S t

σ
Φ

=

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟− ⎝ ⎠

∑               (10) 

where Q
nZ  follows a normal distribution with mean 21

2 Jσ−   and variance 2
Jσ , and 

( )Q tΦ  denotes a new Markov-modulated Poisson process with a new intensity matrix 

given by 

*1

2 *

( )
(
0

0 )
Q

J

J

h
h

λ
λ

φ
φ

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦
                    (11) 
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where *

2

2*

21exp(( ) )
2 8

J J J

J

h ZJ Ph E e μ σφ
σ

− +⎡ ⎤= =⎣ ⎦ . *( )J
i hλφ is the Markov-modulated 

intensity (Bo et al. 2010). However, the invariant Markov chain X  has an original 

matrix of the transition rates Ψ  that remains unchanged under the risk-neutral 

measure.  In addition, when 1λ  is equal to 2λ , equation (10) will reduce to the 

JDM under the risk-neutral measure. Based on the new intensity matrix and the 

invariant Markov chain X , the joint probability under the risk-neutral measure is 

defined by 

( , ) ( (0) , ( ) , ( ) )Q
ijQ n t X i X t j t n≡ = = Φ =Q .            (12) 

The joint probability under the risk-neutral measure can be determined from the 

moment generating function, ( )( )( , ) exp (1 ) Qt tξ ξ= Ψ− − ΛP . 

(II) The Case With Filtration G : Regime-Switching Risk Premium. 

By following Bo et al. (2010), the martingale condition can be shown to be: (See 

Appendix A )   

( )
2

1

( )

1

1exp( ) [exp (1 ) ( ) (1 ) | ]
2

                                                                         [exp ( ) | ] 0

t
P C J X

n
n

t
P C J X

n
n

rt t t E h W t h Z

E h W t h Z

μ σ σ

σ

Φ

=

Φ

=

⎛ ⎞
− + − + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

∑

∑

0

0

F

F

under =M�G , where X
0F   is given in a stationary state. 

In the case of the filtration G , a new Markov chain *X  has a new transition-rate 

matrix *Ψ  which is given in (13) by the first-order approximation of Taylor 

expansion: 
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( ) ( )
( ) ( )

* *
1 * 1 1 * 1* 1 1

* *
2 2 2 * 2 2 * 2

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

J J

J J

h h

h h

α φ λ α φ λα α
α α α φ λ α φ λ

⎡ ⎤− + − + −⎡ ⎤− ⎢ ⎥Ψ = ≈⎢ ⎥ ⎢ ⎥− + − − + −⎣ ⎦ ⎣ ⎦
   (13) 

and ( ) ( )* * * *
1 2 2 1* *

1 2

1, ,π π α α
α α

=
+

 denote new stationary sates. Therefore, with the new 

intensity matrix and the new Markov chain, the new transition matrix under the 

risk-neutral measure is given by  

* ( , ) ( (0) , ( ) , ( ) ) Q Q Q
ijQ n t X i X t j t n≡ = = Φ =Q .          (14) 

By observing the above result, the new joint probability * ( , )ijQ n t  is affected by the 

jump rate and the moment generating function of the jump variable. The terms 

* 1(1 ( ))Jhφ λ− and * 2(1 ( ))Jhφ λ−  in *Ψ are related to the premium of regime-switching 

risk for the following reason: if *( )Jhφ  in (13) is equal to one, the new transition-rate 

matrix *Ψ   reduces to the original matrix Ψ in (6), and the new intensity matrix 

QΛ  in (11) equals Λ . In this case, the risk premium terms disappear, and the 

transition-rate and the intensity matrices are unaltered by regime switching. 

Accordingly, regime switching is not a source of risk. However, *( )Jhφ  would not be 

generally equal to 1. As such, regime switching causes changes in the transition-rate 

and the intensity matrices, and thereby inducing a source of risk which cannot be 

diversified. The associated risk premium is represented by the two extra terms in *Ψ  

indicated above. This result can be further reasoned next.  

The jump term in the pricing of futures options under the Merton’s framework is 

regarded as unsystematic risk (Ballotta, 2005). Merton (1976) provides the equivalent 

martingale measure (or Merton measure) obtained by shifting the drift of a Brownian 

motion, but leaving the jump part unchanged by assuming that jump risk is 
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diversifiable (or unsystematic risk). Nevertheless, Jarrow and Rosenfeld (1984) 

provide empirical evidence showing that the jump component does affect the 

equilibrium prices of contingent claims, meaning that it is a source of systematic risk. 

Moreover, Ballotta (2005) finds that the Esscher measure appears to be the most 

suitable measure to capture the additional risk induced by the occurrence of crashes in 

the insurance market. Therefore, we consider the jump events occurred in the carbon 

market as a source of systematic risk. As such, investors require a risk premium for 

assuming the jump risk at each state, and hence the jump risk is priced. This fact has 

already been observed in the transition-rate matrix *Ψ of the Markov-modulated 

Poisson process *X  after the Esscher transform is changed to the risk-neutral 

measure.   

Finally, an empirical study is used to analyze the prices of futures options with 

regard to systematic and unsystematic risk via the different filtrations G   and H . 

This is shown in the next section. 

4.2 Valuation of futures   

(I) Constant Convenience Yield 

We assume first a constant interest rate and a constant convenience yield. The 

futures price is determined by the following no-arbitrage condition: 

1( )( )
1 1( , ) [ ( ) | ] ( ) r T t

c tF t T E S T S t e δ− −= =Q F    (15) 

where  1( , )cF t T  denotes the daily futures price under a constant convenience yield δ , 

( )S t  is the daily spot EUAs price, 1T  is the futures contract maturity, and r  is the 
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risk-free interest rate. Equation (15) with 0δ =  becomes a standard cost-of-carry 

model. 

 Daskalakis et al. (2009) adopt a JDM with a mean-reversion stochastic 

convenience yield to describe the relationship between the spot EUAs in Phase I and 

the EUA futures prices in Phase II. However, Uhrig-Homburg and Wagner (2009) 

disagree to use the stochastic convenience yield to examine the relation in Phase I and 

II. They find that in the case of EUA futures, intra-phase contracts (EUA futures 

commenced and expired in the same phase of the EU ETS) can be well described by 

the cost-of-carry model with zero convenience yields. Hence, we also investigate the 

contradictory issue of the convenience yield in intra-phase contracts. 

 We first estimate the convenience yield  ( )ktδ   using the following equation:  

1

1

( , )1( ) ln
( )
k

k
k

F t Tt r
T t S t

δ
⎛ ⎞

= − ⎜ ⎟− ⎝ ⎠
                  (16) 

where 1( , )kF t T  denotes the closing price of the EUA futures in ECX observed on 

day kt , 1(  for every )kt T k≤ , and ( )kS t  is the daily price of the spot EUAs. The 

convenience yield is estimated under the no-arbitrage condition. We then plot the time 

series of the estimated convenience yields from 26/02/2008 to 30/12/2010 in Figure 4. 

The evidence shows that the dynamics of the convenience yield is a mean-reverting 

process. 

【Insert Figure 4】 

(II)  Stochastic Convenience Yield 
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Daskalakis et al. (2009) adopt a mean reverting random process under the 

risk-neutral measure to describe the behavior of the convenience yield given below: 

( ) [ ( ( )) ] ( )s s s s s s s sd t t dt dW tδ κ θ δ λσ σ= − − +             (17) 

where sκ  denotes the speed of mean-reversion, sθ  represents a long-term mean 

yield, sσ  is the volatility of the convenience yield, and sλ  is the 

convenience-yield market price of risk. Then, the RSJM dynamics of spot EUAs 

prices with the stochastic convenience yield under the risk-neutral measure can be 

represented as follows: 

( )

1

( ) ( ( )) ( ) ( 1)
( )

Q
Q
n

t
ZQ

n

dS t r t dt dW t d e
S t

δ σ
Φ

=

⎛ ⎞
= − + + −⎜ ⎟⎜ ⎟− ⎝ ⎠

∑   .      (18) 

Let ρ  denote the instantaneous correlation between ( )sdW t  and ( )QdW t  and the 

rest of the stochastic processes be mutually independent. Based on (17) and (18), the 

price of a futures contract with a stochastic convenience yield under the no-arbitrage 

condition can be solved and given by 

1( , ) ( )
1 1( , ) ( ) ( , )rt H t T t

sF t T S t e A t Tδ−=         (19) 

where 
2 2 2

1 1 1
1 2

[ ( . ) ( )]( / 2 ) ( . )( , ) exp
4

s s s s s s s s

s s

H t T T t H t TA t T κ θ κ λ σ ρσσ κ σ
κ κ

⎡ ⎤− − − +
= −⎢ ⎥

⎣ ⎦
  

and
 

1( )

1
1( , )

s T t

s

eH t T
κ

κ

− −−
=  for all 1t T≤ . 
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Note that the futures prices given in (19) certainly involve the parameters of the 

mean reverting process of the convenience yield, and σ  is the volatility of asset 

returns in (18) with jumps under the RSJM.  

4.3 Valuation of options on emission allowances 

The Black’s formula for pricing options on futures is well-known and given by 

[ ]( )
1 1 1 2( ) ( ( , ), , , , ) ( , ) ( ) ( )r T t

B c B c cC F C F t T K r T t e F t T N d KN dσ − −= − = −       (20) 

where  

21

1 2

( , ) 1ln ( ( ))
2

( )

cF t T T t
Kd

T t

σ

σ

+ −
=

−
, 2

2 1 ( )d d T tσ= − − , 

K = the strike price, T = the option’s maturity, 1T T≤ . 

The EUA futures price 1( , )cF t T  in (20) disregards the convenience yield ( 0δ = ) and 

σ  is the volatility of asset returns without a jump ( BR ) defined in (2).  

(I)  Valuation of Options Under the JDM 

For a given jump term ( 0n > ) of the JDM, the price of a European call option on 

the EUA futures under the constant convenience yield is given by 

( )

[ ]

( )
1 1 1

( )
1 1 2

( ( , ), , , , , ; ) ( , ) ( )

                               ( , ) ( ( )) ( ( ))

r T t Q
J c J t c

r T t
c

C F t T K r T t n e E F T T K N t n

e F t T N d n KN d n
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= −
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 (21) 

where  

2 21

1 2 2
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F t T T t n
Kd n
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σ σ

σ σ

+ − +
=

− +
, 2 2

2 1( ) ( ) ( ) Jd n d n T t nσ σ= − − + , 
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Q
tE is a risk-neutral measure expectation at time t , and σ  is the volatility of asset 

returns with jumps ( JR ) defined in (4). Equation (21) reduces to the Black’s formula 

when the jump term ( n ) is set zero. Hence, the pricing model of a European call 

option on the EUA futures under the JDM with a constant convenience yield is given 

by 

*
*

( )
1

0

( ( ))( ) ( ( , ), , , , , ; )
!

n
T t

J c J c J
n

T tC F e C F t T K r T t n
n

λ λ σ σ
∞

− −

=

⎡ ⎤−
≡ −⎢ ⎥

⎣ ⎦
∑

      
(22) 

where *
*( )Jhλ λφ= . Note that equation (22) is a weighted sum of the Black’s formulas 

subject to the n-th jump under a Poisson distribution.   

(II) Valuation of Options With Filtration H  Under the RSJM 

As observed in Section 4.1, the state of the Markov chain under the filtration H  

is known to investors, and hence regime-switching risk is not priced. In addition, 

( , )ijQ n t  in (12) under H  has an invariant Markov chain and a new Poisson process 

with a new intensity matrix QΛ . Thus, under the filtration H  (without risk 

premium), the price of a European call option on the EUA futures with a constant 

convenience yield is given by 

( )( )
1 1 1( ( , ), , , , , ; ) ( , ) (0) , ( ) , ( )r T t Q

R c J t cC F t T K r T t n e E F T T K X i X t j t nσ σ +− − ⎡ ⎤− = − = = Φ =⎢ ⎥⎣ ⎦
Q

(23) 

By observation, equation (23) is involved with not only the regime-switching 

probabilities, but also two jump risks of Poisson distributions. Thus, under the RSJM 

with a mean-reverting convenience yield model, the pricing model resembles a 

generalized Black’s formula and can be easily derived as follows: 



28 

 

[ ]( )

1 1
0 , {1,2}

( )
1 1 2

0 , {1,2}

( , ) ( , ) ( ( , ), , , , ( , , ), ; )

              ( , ) ( , ) ( ( )) ( ( ))

R s i ij R s J
n i j

r T t
i ij s

n i j

C F Q Q n T t C F t T K r T t V t T T n

Q n T t e F t T N d n KN d n

π σ

π

∞

= ∈

∞
− −

= ∈

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑  
(24) 
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Moreover, the EUA futures price 1( , )sF t T  in (24) is defined in (19) with a stochastic 

convenience yield and the volatility σ  is the spot return ( )RR  volatility given in (7) 

under the RSJM. In addition, the volatility 1( , , )V t T T  of the futures return is 

composed of the volatility of RR  and the parameters of the mean-reverting 

convenience yield model. When the stochastic convenience-yield model is 

disregarded, 2
1( , , )V t T T  reduces to 2( )T tσ −  and the call option ( , )R sC F Q  in (24) 

becomes the pricing model of a futures call option under the RSJM with a constant 

convenient yield, called it ( , )R cC F Q . In addition, the joint probability ( , )ijQ n T t− , 

and the Markov-chain transition rate in (24) are unchanged under the risk-neutral 

measure, implying that the Markov chain uncertainty induces a source of 

unsystematic risk under the filtration .H�   
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(III)    Valuation of Options With Filtration G  Under the RSJM 

Next, we consider the case where the Markov chain uncertainty induces a source 

of systematic risk. When the filtration is conditional on ( )=G M  in the Esscher 

transform as shown in (9), the regime switching via the Markov chain induces 

regime-switching risk, a source of system risk, that is priced in the option valuation. 

As mentioned earlier, the transition-rate matrix under the risk-neutral measure Q  is 

changed to *Ψ  which implies the existence of risk premiums ( )*1 ( )J
ihφ λ−  given in 

(13). Thus, with regard to regime-switching risk, the pricing model of a futures call 

option under the RSJM is given by (25) below: 

* * *
1 1

0 , {1,2}
( , ) ( , ) ( ( , ), , , , ( , , ), , )R s i ij R s J

n i j
C F Q Q n T t C F t T K r T t V t T T nπ σ

∞

= ∈

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑   (25)                     

where * ( , ) ( (0) , ( ) , ( ) ) Q Q Q
ijQ n t X i X t j t n≡ = = Φ =Q with the new transition rate 

matrix *Ψ  and new ( )* *
1 2,π π  defined in (13). 

Proof: Appendix B 

In the same way, the pricing model (25) becomes *( , )R cC F Q  under the RSJM 

with a constant convenience yield when Markov-chain risk is priced. Finally, we note 

that both the pricing models (24) and (25) for the environmental carbon market are of 

a weighted sum (or portfolio) of the Black’s formulas under the RSJM with 

Markov-chain probabilities as the weights. 

5. Empirical analysis of emission allowances market. 

The root mean squared error (RMSE) is employed as a criterion to estimate the 

parameters of the mean-reverting convenience yield model. The RMSE is given in (26) 
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∑
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                     (26) 

where ( )kF tM  is the theoretical price at time kt , ( )kF tD is the daily futures closing 

prices of EUAs on ECX at time kt , and mD  is the total number of observations. The 

pricing performance of the derived formulas is next analyzed, respectively, for 

out-the-money (OTM), at-the-money (ATM), and in-the-money (ITM) futures options 

with the RMSE criterion. 

5.1 Empirical Analysis: Futures of Emission Allowances 

The ECX data are collected daily for EUA futures from 01/11/2010 to 

30/12/2010. The futures are Mar-11, Jun-11, Sep-11, and Dec-11 contracts of year 

2011. Let sλ  be zero as used in Daskalakis et al. (2009).3 The parameters ( sκ , sθ , sσ ,

ρ ) of the mean-reverting convenience yield model are estimated via the minimal 

RMSE criterion on the convenience yield series and the resulting estimates are 

reported in Table 4. The RMSE for Mar-11, Jun-11, Sep-11, and Dec-11 contracts are, 

respectively, 1.1435*10-4, 1.2414*10-4, 1.2560*10-4, 3520*10-4. The estimated 

parameters are very small about 10-4 in intra-phase II (EUA futures commenced and 

expired in Phase II), which is similar to Daskalakis et al. (2009) and Uhrig-Homburg 

et al. (2009). They also provide evidence to show a zero stochastic convenience yield 

in futures prices in intra-phase I. 

                                                       
3  Daskalakis et al. assume that sλ and ρ  are zeros. 
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 【Insert Table 4 】 

5.2 Empirical Analysis of Futures Options on Emission Allowances 

Abate and Whitt (1992) provide a numerical method of generating the probability 

matrix ( , )Q n t and *( , )Q n t  that are, respectively, used in (12) and (14). 

The riskless rate of interest rate r  is the average annual Euribor in year 2010 

which is 1.3407%. The observed call option data contain Mar-11, Jun-11, Sep-11, 

Dec-11 futures options at ECX with strike prices 12,12.5,13,13.5,14,14.5,15, and 15.5. 

There are 256 trading days per year.  

To test the derived pricing models, the observations are divided into in- and 

out-sample groups. The in-sample period starts from 01/11/2010 to 30/12/2010 and 

the out-sample period is from 03/01/2010 to 28/02/2011. The OTM, ATM and ITM 

options are those options, respectively, with / 0.95S K < , 0.95 / 1.05S K≤ ≤ , and

/ 1.05S K > . The pricing errors of the futures options are reported for the six pricing 

models such as ( )B cC F ,  ( )J cC F , ( , )R cC F Q , ( , )R sC F Q , *( , )R cC F Q , and *( , )R sC F Q . 

The total pricing errors of the OTM, AMT, and IMT futures options reported in Table 

5 for the in-sample period are 0.0992 under ( )B cC F , 0.0832 under  ( )J cC F , 0.0765 

under ( , )R cC F Q , 0.1124 under ( , )R sC F Q , 0.0566 under *( , )R cC F Q , and 0.0515 

under *( , )R sC F Q . In the out-sample period case, the total pricing errors of the futures 

options are 0.1640 under the ( )B cC F , 0.1488 under ( )J cC F , 0.1430 under ( , )R cC F Q , 

0.1928 under ( , )R sC F Q , 0.1190 under *( , )R cC F Q , and 0.1112 under *( , )R sC F Q . By 

combining all of the options in the dataset, the total pricing errors of the futures 
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options are 0.1354 under ( )B cC F , 0.1204 under ( )J cC F ,  0.1146 under ( , )R cC F Q , 

0.1574 under ( , )R sC F Q , 0.0924 under *( , )R cC F Q , and 0.0854 under *( , )R sC F Q . 

【Insert  Table 5】 

We observe the above results that all models perform better in the in-sample 

period than in the out-sample period. In all cases, the pricing errors of the OTM 

options are larger than those of the ITM options. In the model testing for the different 

time periods, we find that the JDM performs better than the BSM model under a zero 

convenience yield, i.e., the  ( )J cC F  has a RMSE less than the ( )B cC F , regardless of 

the in- or out-sample period, which is consistent with Daskalakis et al. (2009) 

showing that the carbon market exhibits a jump feature at different Phases. With 

regard to regime switching risk premium, the derived futures option pricing model 

[ *( , )R sC F Q ] under the RSJM with a stochastic convenience yield has the lowest total 

RMSE among all other models in the in- and out- sample periods as well as in the 

whole period. That is, the *( , )R sC F Q  is the best performer. In addition, the 

*( , )R sC F Q  has a lower RMSE than the ( , )R sC F Q  with a zero convenience yield. 

And also, the *( , )R cC F Q  shows a lower total RMSE than the ( , )R cC F Q  under the 

two pricing kernels. These results clearly indicate that Markov-chain risk is a priced 

systematic risk and should be incorporated into the valuation of futures options in the 

carbon market. This conclusion is also supported by Siu et al. (2009) who show using 

numerical experiments that regime-switching risk has a significant impact on the 

pricing of options. 

 Adding a stochastic convenience yield does not improve the accuracy of the 
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pricing of futures options. Specifically, the total RMSE of the *( , )R sC F Q  is slightly 

smaller than (or about the same as) that of the 
*( , )R cC F Q  in all the test periods. 

However, the ( , )R sC F Q  performs marginally worse than the ( , )R cC F Q  in terms of 

the RMSE.4 Thus, using a stochastic convenience yield adds not much to improve the 

pricing accuracy.  

In summary, the derived futures option pricing models are empirically tested 

using the ECX data, and the six theoretical call option models, ( )B cC F ,  ( )J cC F , 

( , )R cC F Q , ( , )R sC F Q , *( , )R cC F Q , and *( , )R sC F Q  are empirically compared for 

their pricing accuracy in terms of the size of RMSE. In All cases, the theoretical 

pricing model of futures options derived under the RSJM with a stochastic 

convenience yield is the best performer, when the regime-switching risk premium is 

considered in the pricing of options. Its RSJM counterpart with a constant 

convenience yield has almost the same good performance.  

6. Conclusion  

We examine the spot EUAs return in the BlueNext that exhibits a volatility 

clustering feature and show that the carbon-market system is impacted by 

announcements of CO2 emissions policies. We test empirically the dynamic processes 

such as the BSM (or GMP), the JDM, and the RSJM to check which model can 

provide a better fit to the spot EUAs return of the BlueNext in France. Though the 

JDM performs better than the BSM, the RSJM has the highest explanatory power 

among all the models considered for the carbon allowance market.  

                                                       
4    This result carries over to the pricing models of the futures options derived from the JDM with a 

constant and a stochastic convenience yield.  
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Moreover, the theoretical pricing models of futures options are derived based on 

the BSM, the JDM and the RSJM. The RSJM pricing models with a constant and a 

stochastic convenience yield are obtained via a generalized Esscher transform that 

leads to two types of filtration, one of them associated with a risk premium in the 

carbon-market environment. When regime-switching risk is incorporated, the derived 

pricing models of futures options under the RSJM with a stochastic convenience yield 

exhibit the best empirical performance. Due to the fact that carbon markets are 

frequently impacted by changes in CO2 emissions policies, the regime-switching risk 

induced by Markov-chain uncertainty is an important pricing factor that should be 

incorporated in the valuation of futures options. In addition, using a stochastic 

convenience yield improves slightly the pricing accuracy under the RSJM, but not 

under the JDM. 

 In summary, a good pricing model should be able to capture the 

macroeconomic impacts of good or bad news and to transmit properly the impacts 

into the model dynamics of spot EUAs. Thus, the RSJM is concluded to be the best 

model to fit the price behavior of the carbon market in EU ETS and to price its related 

derivatives. 
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Appendix A 

We consider a martingale condition by showing that the expectation

( )( ) |Q XE S t σ⎡ ⎤∨⎣ ⎦
S

0 TF F  is equal to the initial price (0)S  under the risk-neutral 

measure Q.  
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 is a pricing kernel of the 

Esscher transform under 0( )S Xσ ∨ TF F . We divide the RSJM into two parts: a 

continuous dynamic process and a jump dynamic process. Therefore, the martingale 

condition (A1) can be simplified as the following equation: 
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party is similar to Girsanov theorem. Thus, the new standard Browian motion *( )W t  

under hP  is given by *( ) ( )  CdW t dW t h dtσ= − , where the asterisk *  means the 

new process with the new parameter under the changed measure. The size of jump 

{ }*
nZ has a new probability density * * 2( , )J JN μ σ  with * 2 ,J

J J Jhμ μ σ= + and *
J Jσ σ= .  

By using equation (9) under the risk-neutral measure Q with 0G (= ( )S Xσ ∨0 0F F ), 
we have 
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Esscher transform under 0G . We also divide the RSJM into two parts: continuous and 

jump dynamic processes. Therefore, the martingale condition (A2) leads to the 

following equation 
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Appendix B 

Consider a European call option  
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We simplify the above result to give Equation (24). That is 
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Equation (25) can be derived in a similar way. 
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Table 1: The Evolution of The Trading Value in the Carbon Market From 2005 to  

2010 

The carbon trading markets are divided into two categories of carbon products; one is 
the carbon emission trading system including European Union Emissions Trading 
(EU ETS), the New South Wales (NSW), the Chicago Climate Exchange (CCE), the 
Regional Greenhouse Gas Initiative (RGGI), and the Assigned Amount Units (AAU). 
The other is the greenhouse gas reduction projects in Kyoto Protocol, including the 
Clear Development Mechanism (CDM), and the Joint Implementation and the 
voluntary market. Table 1 represents the evolution of the trading value in the carbon 
markets from 2005 to 2010. The other allowances involve the trading carbon value in 
NSW, CCE, RGGI, and AAU, and the other offset covers the Joint Implementation 
and the voluntary market. The trading value of EUAs increased from 2005 to 2010, 
and EUAs accounts for 84 percent of global carbon market value in 2010. Data source 
comes from state and trends of the carbon market in carbon finance by the World 
Bank in 2011. 

Value 
($Billion) 

EU ETS 
Allowances 

Other  
Allowances

Primary 
CDM 

Secondary 
CDM 

Other 
Offsets 

Total  

2005 7.9 0.1 2.6 0.2 0.3 11.0 

2006 24.4 0.3 5.8 0.4 0.3 31.2 

2007 49.1 0.3 7.4 5.5 0.8 63.0 

2008 100.5 1.0 6.6 26.3 0.8 135.1 

2009 118.5 4.3 2.7 17.5 10.7 143.7 

2010 119.8 1.1 1.5 18.3 1.2 141.9 
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Table 2: Statistics of the Spot EUAs Returns in BlueNext 

BlueNext Phase I Phase II 
Period I Period II Period III 

Number of Obs. 216 412 742 
Maximum 0.0854 0.5108 0.1055 
Minimum -0.1343  -0.5108 -0.1029 
Mean 0.0011  -0.0163  -0.0006 
Variance 0.0006  0.0086  0.0006 
Skewness -1.0244  -0.1525  -0.2680 
Kurtosis 8.7496  9.2656  5.2771 

Number of  returns 
 more than 5% 

5 
(0.0643) 

51 
(0.1328) 

9 
(0.0723) 

Number of returns 
 less than -5% 

6 
(-0.0848) 

96 
(-0.1336) 

25 
(-0.0662) 

Total 11 147 34 

Note: 1. The spot EUAs prices in BlueNext started from 24/06/ 2005 to 30/12/2010. 
2. The parentheses denote the mean of returns more than 5% or less than -5%. 
3. The results of EEX are similar, so omitted it. 
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Table 3: Estimated Parameters of the BSM, the JDM and the RSJM in the Spot Market at BlueNext 

Time Model 11p  22p  μ  Jμ  σ  Jσ  1λ 2λ  LRT 

Period I BSM -- -- 0.0011 -- 0.0251 -- -- --  
24/06/2005  -- -- (0.0017) -- (0.0012) -- -- --  
24/04/2006 JDM -- -- 0.0024 -0.0026 0.0112 0.0314 0.4846 -- 61.89*

  -- -- (0.0013) (0.0038) (0.0013) (0.0018) (0.3939) --  
Period II BSM -- -- -0.0163 -- 0.0924 -- -- --  
01/06/2006  -- -- (0.0046) -- (0.0032) -- -- --  
28/12/2007 JDM -- -- 0.0004 -0.0171 0.0074 0.0879 0.9789 -- 328.89*

  -- -- (0.0008) (0.0046) (0.0003) (0.0019) (0.4902) --  
Phase I BSM -- -- -0.0108 -- 0.0805 -- -- --  

24/06/2005  -- -- (0.0031) -- (0.0022) -- -- --  
28/12/2007 JDM -- -- 0.0005 -0.0180 0.0114 0.0947 0.6279 -- 632.38*

  -- -- (0.0004) (0.0051) (0.0004) (0.0014) (0.1377) --  
     RSJM 0.9868 0.9830 0.0005 -0.0190 0.0168 0.0982 0.0009 1.0460 134.21*

  (0.0068) (0.0087) (0.0009) (0.0052) (0.0008) (0.0065) (0.0068) (0.1022)   
Phase II BSM -- -- -0.0006 -- 0.0239 -- -- --  

26/02/2008  -- -- (0.0009) -- (0.0006) -- -- --  
30/12/2010 JDM -- -- 0.0016 -0.0073 0.0169 0.0302 0.2974 -- 67.75*

  -- -- (0.0010) (0.0060) (0.0032) (0.0034) (0.3201) --  
 RSJM 0.9852 0.9773 0.0014 -0.0028 0.0158 0.0210 0.0003 1.7970 79.89*

  (0.0071) (0.0113) (0.0008) (0.0014) (0.0007) (0.0028) (0.0058) (0.4195)  
Note: 1. (•) denotes the standard deviation estimated by the SEM algorithm. 

       2. JDM represents the jump diffusion model, and RSJM is the regime switching jump diffusion model. 
       3. LRT represents the likelihood ratio test between the null hypothesis of the jump diffusion model and the alternative 

hypothesis of the regime switching jump diffusion model.  
         4.The parameters in EEX are also estimated, but the trading volume in EEX is thinner than BlueNext, and so omitted it. 
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Table 4: The Parametric Estimation of The Stochastic Convenience Yield  
Parameters of 
convenience 
yield*10-4 

 Mar-11  Jun-11 Sep-11  Dec-11 

sκ  0.1280 0.1366 0.1343 0.1344 

sθ  0.1163 0.1130 0.1182 0.1173 

sσ  0.0295 0.0260 0.0253 0.0235 
ρ  0.1218 0.1241 0.1230 0.1240 

RMSE 1.1435 1.2414 1.2560 1.3520 
Note:1. The parameters ( sκ , sθ , sσ , ρ ) are calculated through Equation (19) for the 

period from 09/04/2008 to 30/12/2010 in ECX. 

2. RMSE refers to the relative mean square error, which is expressed in 10-4. 
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Table 5: The Futures Option Pricing Errors measured by RMSE With The Underling 
for ECX with Mar-11, Jun-11, Sep-11and Dec-11 futures contracts. 

Date Call Model OTM ATM ITM Total 
In sample ( )B cC F  0.1797 0.1186 0.0383 0.0992 

  ( )J cC F  0.1485 0.0988 0.0355 0.0832 
 ( , )R cC F Q  0.1372 0.0897 0.0341 0.0765 
 ( , )R sC F Q  0.2079 0.1309 0.0455 0.1124 
 *( , )R cC F Q  0.0544 0.0485 0.0623 0.0566 
 *( , )R sC F Q  0.0845 0.0539 0.0371 0.0515 

Out sample ( )B cC F  0.2593 0.1741 0.0863 0.1640 
  ( )J cC F  0.2286 0.1579 0.0862 0.1488 
 ( , )R cC F Q  0.2170 0.1518 0.0859 0.1430 
 ( , )R sC F Q  0.3103 0.2123 0.0803 0.1928 
 *( , )R cC F Q  0.1371 0.1252 0.1055 0.1190 
 *( , )R sC F Q  0.1731 0.1231 0.0571 0.1112 

All ( )B cC F  0.2314 0.1495 0.0650 0.1354 
  ( )J cC F  0.2011 0.1322 0.0641 0.1204 
 ( , )R cC F Q  0.1898 0.1252 0.0634 0.1146 
 ( , )R sC F Q  0.2740 0.1768 0.0639 0.1574 
 *( , )R cC F Q  0.1086 0.0946 0.0848 0.0924 
 *( , )R sC F Q  0.1401 0.0944 0.0471 0.0854 

 

Note: 1.The futures option pricing errors (RMSE) are computed for the models 
with the estimated parameters given in Table 4 during the period from 
26/02/2008 to 30/12/2010 using the real option data. “In sample” denotes 
the real option data from 01/11/2010 to 30/12/2010. “Out sample” means 
the real option data from 03/01/2011 to 28/02/2011. 

2.The results are grouped into ‘‘OTM’’(out-of-money,  / 0.95S K < ), 
‘‘ATM’’(at-the-money options, 0.95 / 1.05S K≤ ≤ ) and ‘‘ITM’’ 
(in-of-money, 1.05 /S K< ), ‘‘Total’’ is the pricing error (RMSE) of all 
options in the dataset regardless of OTM, ATM, and ITM options, 
respectively for the In-, Out- sample periods. ‘‘All’’(all options in the 
dataset). 

      3. The data are the futures options traded at ECX. Maturities are Mar-11, 
June-11, Sep-11and Dec-11, of 2011. The strike prices (K) are 12, 12.5, 13, 
13.5, 14, 14.5, 15, and 15.5. 
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Panel A: The dynamics of the spot EUAs in BlueNext, 

 
Panel B: The dynamics of the spot EUAs returns in BlueNext 

Figure 1: The Dynamics of Spot EUAs And Spot EUAs Returns in BlueNext  
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Panel A: The dynamics of the spot EUAs at Phase II 
 

Panel B: The dynamics of the spot EUAs returns at Phase II 
 

Panel C: The probabilistic dynamics of the low intensity    
       with the spot EUAs returns at Phase II in BlueNext 

 

Panel D: The jump probabilistic dynamics with the spot EUAs 
return at Phase II in BlueNext 

 
 

Figure 2: The Dynamics of Spot EUAs, Its Return, The Low Intensity Probability And Jump Probability at Phase II in 
BlueNex 
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Panel A: The autocorrelation of squared spot EUAs returns at Phase I 
in BlueNext 

 
Panel C: The autocorrelation of squared spot EUAs returns at Phase II  

in BlueNext 
 

Panel B: The estimated autocorrelation of squared spot EUAs  
returns with the RSMJ model at Phase I in BlueNext 

 

 
Panel D: The estimated autocorrelation of squared spot EUAs  

returns with the RSMJ model at Phase II in BlueNext 

Figure 3: The Autocorrelation and The Estimated Autocorrelation of The Spot EUAs Returns with the RSMJ Model at 
 Phase I and II in BlueNext 
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  ( )ktδ  denotes the daily empirical convenience yield given by (17) with during  

with average interest rate during the period 2008-2010. 
 

Figure 4: The Time Series Behavior of Convenience Yield 
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